قضایای نقطه ثابت برای نگاشت های c-انقباضی ضعیف در فضاهای متری مرتب

thesis
abstract

چاترجیا، مفهوم نگاشت‎ c-انقباضی را ارائه داد و ثابت کرد که، اگر x یک فضای متریک کامل باشد، آنگاه هر نگاشتc-انقباضی روی x یک نقطه ثابت منحصربفرد دارد. همچنین چوهادری، تعریفی برای c-انقباضی ضعیف که تعمیمی از مفهوم نگاشت c-انقباضی است ارائه داد و ثابت کرد که، اگر x یک فضای متریک کامل باشد، آنگاه هر نگاشت c-انقباضی ضعیف روی x یک نقطه ثابت منحصربفرد دارد. در این تحقیق به بررسی نتایج فوق در فضای متری مرتب می پردازیم. هدف اصلی این تحقیق، معرفی بعضی از نتایج نقطه ثابت برای نگاشت های c-انقباضی ضعیف در فضای متری مرتب است. واژگان کلیدی: نقطه ثابت، فضای متری مرتب، c-انقباضی ضعیف

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

قضایای نقطه ثابت برای نگاشت های انقباضی تعمیم یافته در فضاهای متری مرتب

در سال های اخیر، نتایجی از قضایای نقطه ثابت بسیاری در فضاهای متری جزئاً مرتب به دست امده است. نخستین قضیه در این جهت متعلق به ران و رویرینگز در سال 2004 است که انها کاربردهایی از ان را در معادلات ماتریسی ارائه دادند پس از ان لوپز و نیتو در سال 2005 نتیجه ران و رویرینگز را گسترش دادند و ان را برای اثبات وجود جواب یکتا برای یک معادله دیفرانسیل معمولی با شرایط مرزی متناوب به کار بردند . فرض کنید x...

15 صفحه اول

قضایای نقطه ثابت مشترک برای نگاشت های انقباضی خاص در فضاهای g-متریک و فضاهای متریک مرتب

تعریف و بررسی خواص فضاهای g-متریک و وجود و یکتایی نقطه ثابت مشترک در فضاهای g-متریک و هم چنین در فضاهای متریک مرتب و وجود و یکتایی نقاط ثابت چهارتایی انقباض های غیر خطی در فضاهای متریک مرتب.

قضایای نقطه ثابت و قضایای همگرایی ضعیف برای نگاشت های پیوندی تعمیم یافته در فضاهای هیلبرت

در این پایان نامه در فصل اوا مفاهیم مقدماتی را بیان کردیم و در فصل دوم نگاشت های غیر انبساطی و غیر پخشی و پیوندی را تعریف کرده و قضیه نقطه ثابت تعمیم یافته و برخی قضایای نقطه ثابت و قضیه ارگودیک غیر خطی را برای این نگاشت ها ثابت میکنیم و در فصل سوم یک رده از نگاشت های غیر خطی به نام نگاشت های پیوندی تعمیم یافته را تعریف می کنیم که شامل نگاشت های غیر انبساطی و غیر پخشی و پیوندی می شوند. سپس قضای...

قضایای نقطه ثابت و نقطه ثابت مشترک روی فضاهای متری مخروط مرتب

فضاهای متری مخروط، تعمیمی از فضاهای متری هستند. در واقع چون مجموعه ی اعداد حقیقی (r) یک فضای باناخ حقیقی است، لذا فضاهای متری حالتی خاص از فضاهای متری مخروط می باشند. تعریف فضاهای متری مخروطبرای نخستین بار در سال 2007 توسط هوانگ و ژانگ ارائه شد. این دو محقق، قضایایی راجع به نقطه ثابت نگاشت های صادق در شرایط انقباضی مختلف را به این فضاهای تازه تعریف، تعمیم بخشیدند. پس از آن، نویسندگان بسیاری با...

قضایای نقطه ثابت برای نگاشت های انقباضی تعمیم یافته در فضاهای gpـ متریک

در این پایان نامه دو قضیه نقطه ثابت را روی نگاشت های تعریف شده در فضاهای gpـ متریک gpـکامل اراپه می دهیم که در خاصیت انقباضی تعمیم یافته توسط توابع نیم پیوسته بالایی معین صدق می کنند.بعلاوه برخی از کاربردهای قضایا را با مثال نشان می دهیم.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023